The integration of systems of linear PDEs using conservation laws of syzygies

نویسنده

  • Thomas Wolf
چکیده

A new integration technique is presented for systems of linear partial differential equations (PDEs) for which syzygies can be formulated that obey conservation laws. These syzygies come for free as a by-product of the differential Gröbner Basis computation. Compared with the more obvious way of integrating a single equation and substituting the result in other equations the new technique integrates more than one equation at once and therefore introduces temporarily fewer new functions of integration that in addition depend on fewer variables. Especially for high order PDE systems in many variables the conventional integration technique may lead to an explosion of the number of functions of integration which is avoided with the new method. A further benefit is that redundant free functions in the solution are either prevented or that their number is at least reduced. 1 A critical look at conventional integration In this paper a new integration method is introduced that is suitable for the computerized solution of systems of linear PDEs that admit syzygies. In the text we will call the integration of single exact differential equations, i.e. equations which are total derivatives, the ‘conventional’ integration method (discussed, for example, in [11]). To highlight the difference with the new syzygy based integration method we have a closer look at the conventional method first. About notation: To distinguish symbolic subscripts from partial derivatives we indicate partial derivatives with a comma, for example, ∂xyei = ei,xy. To solve, for example, the system 0 = f,xx (1) 0 = xf,y +f,z (2) for f(x, y, z) one would, at first, integrate (1) with 2 new functions of integration g(y, z), h(y, z), then substitute f = xg + h (3)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Generalised Polynomial Chaos for a Class of Linear Conservation Laws

Mathematical modelling of dynamical systems often yields partial differential equations (PDEs) in time and space, which represent a conservation law possibly including a source term. Uncertainties in physical parameters can be described by random variables. To resolve the stochastic model, the Galerkin technique of the generalised polynomial chaos results in a larger coupled system of PDEs. We ...

متن کامل

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

A linearization of PDEs based on conservation laws

A method based on innnite parameter conservation laws is described to factor linear differential operators out of nonlinear partial diierential equations (PDEs) or out of diierential consequences of nonlinear PDEs. This includes a complete linearization to an equivalent linear PDE (system) if that is possible. Innnite parameter conservation laws can be computed, for example, with a computer alg...

متن کامل

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multi-dimensions

A direct method for the computation of polynomial conservation laws of polynomial systems of nonlinear partial differential equations (PDEs) in multi-dimensions is presented. The method avoids advanced differential-geometric tools. Instead, it is solely based on calculus, variational calculus, and linear algebra. Densities are constructed as linear combinations of scaling homogeneous terms with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2003